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We formalize sampling a function using k-d darts. A k-d dart is a set of inde-
pendent, mutually orthogonal, k-dimensional hyperplanes called k-d flats.
A dart has d choose k flats, aligned with the coordinate axes for efficiency.
We show k-d darts are useful for exploring a function’s properties, such
as estimating its integral, or finding an exemplar above a threshold. We
describe a recipe for converting some algorithms from point sampling to
k-d dart sampling, if the function can be evaluated along a k-d flat.

We demonstrate that k-d darts are more efficient than point-wise sam-
ples in high dimensions, depending on the characteristics of the domain:
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for example, the subregion of interest has small volume and evaluating
the function along a flat is not too expensive. We present three concrete
applications using line darts (1-d darts): relaxed maximal Poisson-disk sam-
pling, high-quality rasterization of depth-of-field blur, and estimation of the
probability of failure from a response surface for uncertainty quantification.
Line darts achieve the same output fidelity as point sampling in less time.
For Poisson-disk sampling, we use less memory, enabling the generation
of larger point distributions in higher dimensions. Higher-dimensional darts
provide greater accuracy for a particular volume estimation problem.
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Additional Key Words and Phrases: Sampling, dimension, line search, thin
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1. INTRODUCTION

In many applications we are interested in estimating some global
property of a function because it is difficult to calculate that property
exactly. Sampling is the process of randomly selecting samples,
subsets of a domain. The function is evaluated at these subsets, and
the global property is estimated based on those values.

In typical sampling processes, the samples are points. However,
a recurring challenge is to deal efficiently with the case that the
interesting part of the domain is very small compared to the entire
domain. For example, suppose we have a function over a domain,
and we are interested in estimating the volume of the subdomain
where the function is negative. If this subdomain has a very small
volume, only a correspondingly very small fraction of uniform sam-
ple points will land in it; see Figure 1. Consequently, point sampling
will require a large number of samples to get any estimate, and will
be inefficient since most samples will not contribute to the estimate.

We propose the k-d dart to address this problem. One key idea is
that rather than evaluate the function at one single point at a time,
we evaluate it with a higher-dimensional sample. Specifically, we
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Fig. 1. Sampling long and thin subregions (gray) using points (left), lines
(center), and planes (right). Point samples may be cheap to generate and
evaluate, but they contribute nothing to the final result if they miss the
region of interest. Misses (blue) are frequent for regions with a small volume.
Samples of higher dimensions, or k-d darts, often intersect (red) the region
of interest, especially if the region is long and thin. A k-d dart’s greater
expense is offset by it providing more information.

evaluate the function along a set of higher-dimensional flats (i.e.,
lines, planes . . . hyperplanes). The second key idea is to use a set
of mutually orthogonal flats, aligned with the coordinate axes; a
k-d dart denotes this set of flats. Randomly oriented flats have been
considered before, but orthogonal flats are more efficient in many
settings. Moreover, if our subregion of interest is long and thin,
there is a better chance that a good fraction of our flats will hit it
compared to randomly oriented flats. Each fixed-coordinate value
of each flat is chosen independently. This helps ensure that darts
are unbiased, meaning that the expected mean estimate is equal
to the true value. An important case of flats are one-dimensional
lines. Using our previous example, we may find the points along
the line where the function value is zero, then partition the line
into segments where the function value f is strictly positive or
negative, and finally estimate the volume where f < 0 from the
negative-interval lengths. While these samples are more expensive
to compute, they are more powerful; depending on the function they
can generate better results for the same amount of effort.

A simple example that demonstrates this concept is estimating the
volume of a unit ball by sampling from its bounding box: f = −1
inside the ball and 0 outside it, and we seek an estimate of

∫
f <0 1.

Figure 2 shows error versus time as the sample size increases. We
sampled using k-d flats of dimension k = 0, 1, 2. For a point sample,
we checked if the point was inside the ball. For higher dimensions,
we calculated the fraction of the flat inside the ball; see Figure 3. We
performed both Monte Carlo (MC) and Latin Hypercube Sampling
(LHS). For each sample size we ran 100 experiments and calculated
the error in the volume estimate. Plane samples consumed less CPU
time than point samples for the same RMS error. For MC sampling
the payoff was about a factor of 5, and for LHS sampling the payoff
was 3 to 8 orders of magnitude! The reasons behind these gains are
the following.

—Evaluating f along k-d flats is cheap; in this case we exploited
the analytic function of the ball.

—A k-d flat gives more information as k increases.
—A flat is cheap to generate. Each k-d flat requires d − k random

numbers; here d = 3.
—(d − 1)-dimensional flats distributed in LHS fashion boosted the

convergence rate from O( 1√
n
) to O( 1

n
).

In general, evaluating the integration function along a k-d flat costs
more than at a single point. However, for many problems, this extra
cost is offset by the superior capability of a k-d flat to capture
narrow regions. For instance, consider Figure 4(a), where a line
flat perpendicular to that narrow region of interest will capture

Fig. 2. Estimating the volume of a ball using random sampling via k-d flats,
k = 0, 1, 2. For each sample size, we performed 100 experiments and
calculated the RMS error. The reported CPU time is the total time consumed
by these experiments. For MC sampling (a) plane samples consumed an
order of magnitude less time to achieve the same error as point samples. The
savings were even more for LHS (b).

Fig. 3. k-d flats used to estimate the volume of a ball. The fraction of the
subflats inside the ball estimates the function average.

it regardless of its thickness. On the other hand, the probability
of a point sample landing in the region approaches zero as the
thickness decreases. Suppose the region f < 0 is thin in k directions
and fat in the others, and we use k-dimensional flats. Because the
flats deterministically cycle through all coordinate directions, some
fraction of them will be roughly orthogonal to the subregion’s fat
directions even if these fat directions are not axis aligned. These
flats are likely to intersect the subregion.
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Fig. 4. Extreme subregion shapes. In general, a k-d flat has a better chance
to intersect a region of interest as k increases. For a given region volume,
the advantage is higher for stretched regions than for square ones.

The purpose of this article is to formalize and demonstrate the
k-d dart approach. In Section 4, we show three practical appli-
cations: completing a relaxed maximal Poisson-disk sampling, in
dimensions 4–30; rendering depth-of-field blur in four dimensions;
and estimating the probability of failure from a response surface
for uncertainty quantification, where the probability is small, for
example, 1e-5, and the dimension is large, for instance, 15. In each
of these three applications the space is of moderate dimension, and
line darts are particularly effective. The experiments in Section 5
verify the accuracy of higher-dimensional darts, using a volume
estimation application.

2. PREVIOUS WORK

Our work generalizes sampling. There are many patterns for gener-
ating samples. For graphics, maximal Poisson-disk sampling (Sec-
tion 2.1) is common. The traditional focus is dimensions 2 and 3, but
our interests extend beyond. Rendering applications use sampling
in many forms (Section 2.3), often with high dimension. The field
of uncertainty quantification (nongraphics, Section 2.4) attempts to
quantify the range of a computation, typically by performing the
computation many times with a well-distributed selection of input
parameters. This is important in computational science for predic-
tions and reliability.

Our k-d dart is a particular type of high-dimensional sampling.
Line sampling has been explored in a variety of graphics and
nongraphics contexts. Unfortunately much of this work is isolated
and considers fixed-dimensional domains. We hope to help provide
a unified view of these approaches.

Lines appeared early in the history of Monte Carlo sampling.
“Buffon’s needle problem” was published in 1777. It is a problem
in the field of geometric probability. It considers the number of in-
tersections of randomly oriented short line segments (needles) with
axis-aligned, regularly spaced infinite lines. The solution gives an
estimate of the value of π . There are approaches using integral ge-
ometry [Ramaley 1969] and MC experiments [Hall 1873]. There are
some striking similarities between the needle problem and estimat-
ing volume by line darts. Both use finite objects, varying orienta-
tions, and infinite probes. But which of these are known, and which
are measured or estimated, are different. Also both use uniform-
random and uniform-deterministic distributions, but for different
objects. For example, darts are sets of orthogonal flats whose fixed-
dimension indices are deterministic and evenly spaced, but their
geometric position is uniform random. In Buffon’s problem the ge-
ometric position of the rule lines is deterministic, and the position
and angle of the needles are uniform random.

In neutron transport physics simulations, a class of Monte Carlo
algorithms known as “track length estimators” essentially performs
Monte Carlo estimation using line segments [Spanier 1966]. This
is in contrast to the “collision estimators” class that estimates using

point samples. In graphics, these collision estimators correspond
to standard volumetric photon mapping estimation using photon
scattering locations [Jensen and Christensen 1998]. Track length
estimators using line samples correspond to photon beams, where
the estimation uses random-walk path segments [Jarosz et al. 2011].
In surface reconstruction and CAD modeling, we can count the in-
tersections of unoriented line samples with the surface, then make
use of the integral geometry Cauchy-Crofton formula to estimate
integration quantities such as surface area or enclosed volume [Liu
et al. 2006]. To get the right estimate with low variance, it is cru-
cial to select the sample lines using the right probability model.
For example, models for bundles of uniformly spaced parallel lines,
reminiscent of both k-d darts and the regularly spaced lines in Buf-
fon’s needle problem; models for chordal lines; and pseudo-random
and other numerical sequences have all been studied in the context
of sampling surfaces [Rovira et al. 2005].

2.1 Relaxed Maximal Poisson-Disk Sampling

Maximal Poisson-disk Sampling (MPS) is a popular graphics tech-
nique to distribute a set of points in a domain. The region of interest
is dynamic: the remaining uncovered areas are called “voids.” A
candidate sample that lands in a void is a “hit” and is accepted, oth-
erwise it is a “miss.” The points are random and have a blue-noise
spectrum, which is well suited to the human visual system and helps
avoid visual artifacts. The points have a minimum distance between
them, rf , which helps to use the point budget efficiently. We denote
the maximum distance from a domain point to its nearest sample by
rc. In a maximal sample, the rf disks around the points overlap to
cover the whole domain, leaving no room to add another point, and
rc ≤ rf . Otherwise, maximality is relaxed, and we measure how
far the geometry is from maximality by the distribution aspect ratio
β = rc/rf ≥ 1. Point sets with a meaningful upper bound on β are
separated yet dense, also known as “well spaced.”

MPS algorithms abound, and often achieving maximality is the
most challenging part. In some applications maximality is not re-
quired [Lagae and Dutré 2008]. The acceptable relaxation of max-
imality depends on the application. For example, in Voronoi mesh
generation [Ebeida and Mitchell 2011], the cells have an aspect ratio
bound that varies smoothly with the relaxation, 2β. Some methods
sacrifice maximality to terminate more quickly, but explicit state-
ments about the achieved β are rare.

Many methods use some form of a background grid for tracking
the voids, and point location and proximity queries [Ebeida et al.
2011; Jones and Karger 2011; Wei 2008]. The grid may be refined,
as in a quadtree [Gamito and Maddock 2009; White et al. 2007].
This can be made efficient in dimensions up to about 5 [Ebeida et al.
2012]. However, even in dimensions below 5, refinement methods
can run out of memory as the sample size increases. Memory prob-
lems are exacerbated on a GPU.

Uncertainty quantification motivates MPS sampling in higher di-
mensions, for example, 10–30. No MPS methods in the literature
scale to these dimensions due to the so-called “curse of dimen-
sionality.” Classical dart throwing [Cook 1986; Dippé and Wold
1985] is not strongly dependent on dimension, but as the number
of accepted samples increases, the runtime for the next sample be-
comes prohibitive and the algorithm must terminate well before
maximality.

Consider sampling a unit box with disk radius r in dimension d .
Some issues are fundamental to the problem, independent of any
specific algorithm or application. The size of a maximal sampling
n is indeterminate, but its lower and upper bounds grow exponen-
tially as O(1/r)O(d). The kissing number, the number of disks that
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can touch another disk, grows exponentially in d . (The geometry
literature discusses these issues extensively. The densest packings
and largest kissing numbers by dimension are summarized in Nebe
and Sloane [2012].)

The curses of dimensionality for grid-based methods go beyond
those unavoidable issues.

(1) The base grid size grows exponentially and faster than the
output point set.

(2) A grid cell is refined into 2d subcells.
(3) The number of nearby cells that might contain a conflicting

sample grows faster than the kissing number.
(4) The ratio of misses/hits grows exponentially with the dimen-

sion [Ebeida et al. 2012].

Item 1 arises because the size of the base grid is usually cho-
sen such that each cell can accommodate at most one point: base
squares have diagonal length r and edge length r/

√
d . Worse, at

maximality, the number of empty base cells grows exponentially
with the dimension. These empty cells increase the time, and espe-
cially the memory requirements, to prohibitive levels. One possible
solution is to choose a base grid level with edge length 2r , so that
every square must contain one point. However, due to Item 2, this
approach just defers the problem until cells are required to be re-
fined a couple of times to represent voids. Because of the kissing
number, representing voids through geometric constructions does
not appear to be a viable solution in high dimensions.

Some approximate methods [Wei 2008] put an upper bound on
the number of misses per cell, which partly addresses Item 4. The
drawback is that the sampling is not maximal. How far it is from
maximality has not been analyzed, but volume arguments suggest
that for a fixed box size, the number of allowed misses must grow
exponentially in d to bound the linear distance between an uncov-
ered point and a sample’s disk.

While some of these issues affect runtime, the real curse is the
memory requirements for quadtrees. Simple MPS [Ebeida et al.
2012] is the quadtree method with the best memory scaling by
dimension. It seems unlikely to extend to even d = 10 in the near
future. Simple MPS uses a flat quadtree of same-sized squares,
periodically refining all remaining squares uniformly. We compare
our results to Simple MPS in Section 4.1.4.

2.2 Motivation for High-Dimensional Point Sets

In the design of computer experiments, we generate points in pa-
rameter space, then evaluate a function at the sample points. We
often build a surrogate model based on those points’ values, for
example, Kriging models. The dimension is equal to the number
of parameters, so can be very high. The time it takes to generate
the points is often very small compared to evaluating the function,
so it is worthwhile to spend the time to find a set of points that
span the space efficiently. Well-spaced points use the point bud-
get efficiently, and provide bounds on the condition number and
interpolation error.

For some applications, if the function is not too expensive, it
may make sense to sample the function directly using k-d darts.
For example, if the integral of a function over a flat is available
analytically, then sampling it directly using k-d darts would be very
efficient. Otherwise, k-d darts can provide well-spaced points (see
Section 4.1); we can build a surrogate model over those points; then
k-d darts can integrate the surrogate model analytically.

Another application where well-spaced point sets are required is
finite element simulation, where we need a computational mesh of
the points.

2.3 Rendering

High-quality rendering is an important application of multidimen-
sional sampling. Photorealistic effects like motion blur, depth-of-
field (defocus), and soft shadows can be expressed as integrals over
multiple dimensions. Classical techniques often employ stochastic
point sampling to estimate these integrals. Noise-free rendering us-
ing point sampling can require a large number of samples, which
can be extremely expensive for complicated scenes.

Thus a long history of research has targeted choosing samples
wisely. The goal of Mitchell’s classic antialiasing paper [1987] is
to reduce sample density while producing a high-quality image.
Metropolis light transport [Veach and Guibas 1997] “performs es-
pecially well on problems that are usually considered difficult” by
using mutations to preferentially (but in an unbiased way) sample
light paths in interesting regions of the path space.

Besides choosing samples carefully, another approach toward the
same goal is to reduce the number of required samples through tech-
niques such as sample reuse and/or caching. For example, a notable
recent advance in this area, by Lehtinen et al. [2011], specifically
notes “a clear need for methods that maximize the image quality
obtainable from a given set of samples” and exploits anisotropy in
the temporal light field to reuse samples between pixels. Our work
has a similar goal—making the best use of a limited number of
samples—but instead reduces the number of necessary samples by
increasing their dimensionality.

k-d darts formalize a general way of multidimensional sam-
pling. Several early graphics applications use multidimensional
samples in limited and specific scenarios. The OpenGL accumu-
lation buffer [Haeberli and Akeley 1990] uses a form of k-d darts
for motion blur: each output pixel is an aggregate of several input
pixels, each of which may span a 2-d region (pixel area) for a con-
stant shutter time. Essentially, the accumulation buffer samples 2-d
x-y images in a 3-d x-y-time space. Max [1990] uses a scan-line
visible surface algorithm that generates line samples, describing
how to use the information in these samples to create antialiased
images.

Recent research has also shown promise in rendering high-quality
motion blur using multidimensional samples. Gribel et al. [2010,
2011] present the use of line samples (our “1-d flats”). In their
3-d domain (x, y, t) they fix x, y and perform a 1-d flat in the t
domain1. They also extend their implementation to render motion-
correct ambient occlusion.

Recently, line samples have proven useful in the representation of
light. Sun et al. [2010] represent lighting and viewing rays directly
in a 6-d Plücker space, which allows an efficient formulation of
finding nearby lighting rays. This, in turn, allows accurate, fast ren-
dering of large scenes with single scattering even in the presence of
occlusions and specular bounces. The previously mentioned work
of Jarosz et al. [2011] concentrates on better representations for
light paths in photon tracing for the purposes of rendering partici-
pating media in light interaction; previous methods had used photon
particles. Instead, they represent and store full light paths (samples),
resulting in a more compact and expressive lighting representation
with corresponding performance benefits.

Jones and Perry [2000] experimented with using analytical line
sampling for antialiased polygon rendering. They shoot single-
dimensional darts across a pixel’s surface, analytically compute
triangle coverage for each, and then average to obtain pixel colors.

1In their 2011 paper, Gribel et al. use 2-d darts but call them line samples
because they are lines in x-y space.
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Our article generalizes the idea of multidimensional darts for
sampling, and it is this generalization that helps us design renderers
that use k-d darts in different configurations. For rendering depth-
of-field effects with added antialiasing, we present a generalized
configuration using a full 1-d dart in Section 4.2. That is, we use a
set of orthogonal flats rather than just a single flat as in prior work.
We compute high-quality depth-of-field images efficiently.

While we demonstrate just one configuration of k-d darts, several
different strategies are possible for depth-of-field and other effects.
In general, k-d darts offer a sampling process that converges faster
and has lower noise than point sampling; the use of k-d darts offers
the potential benefit of faster convergence but must be weighed
against the higher complexity per k-d dart.

2.4 Monte Carlo Sampling

Random sampling is one of the oldest [Hall 1873] and most robust
methods for uncertainty quantification. The principal use of Monte
Carlo (MC) sampling is to approximate a high-dimensional integral
with a sample mean. The primary drawback of MC is the slow rate
at which the sample mean converges to its true value. The standard
error in the computed mean for n samples is

σerr = σ√
n

. (1)

Although this rate of convergence in n is very slow, the number of
dimensions, d , does not appear and MC is not subject to the curse of
dimensionality. Significant effort has been invested in developing
variants of MC with faster rates of convergence; a full review is out
of scope. Latin Hypercube Sampling (LHS) [McKay et al. 1979;
Owen 1992] is known as “N-rooks sampling” in the graphics com-
munity. Importance sampling [Glynn and Iglehart 1989] involves
preferentially sampling rare cases and compensating by reducing
their weight.

3. DART FRAMEWORK

Given the ideas of the method (Section 1) and where it might be
useful (Section 2), we now define it formally and give a general
recipe for converting a point sampling algorithm to a k-d dart sam-
pling algorithm. We consider two application scenarios. The first
is sampling to estimate the average of a function, as in numerical
integration; see Section 3.1. The second is sampling to find loca-
tions in the domain where the function has a particular value; see
Section 3.2.

We begin with terminology. Function f is defined over domain
X ⊂ R

d . Often X = [0, 1]d or a hyperrectangle box. A flat F is
a k-dimensional hyperplane, the vector space defined by leaving k
coordinates free and fixing the remaining d −k coordinates, clipped
at the domain boundary. A k-d dart sk is a sample defined by a set of
I = (

d

k

)
k-dimensional flats, sk

i , one for each combination of fixed
coordinates. So in R

2, a 1-d dart might consist of the two 1-d flats
at x = 0.5 and y = 0.3.

3.1 Averaging a Function over a Domain

Consider an algorithm that depends on the average value of f , and
receives a series of single values, y = f (x), from evaluating f at
uniform-random points x.

3.1.1 Algorithm for Box Domains. We can instead return a
series of y ′ values generated over uniform-random k-d darts. We
generate a k-d dart’s flats one at a time. For each flat F we choose
its fixed coordinates uniformly at random, then:

(1) clip the hyperplane at the domain boundary and calculate its
relative volume V (F ) = ∫

F
1. For boxes this is trivial;

(2) integrate the function along the clipped hyperplane: G = ∫
F

f ;

(3) return y ′, the average of f over the flat, y ′ = H = G/V (F ).

Each flat of any dart is unbiased, in the sense that the expected
value of y ′ is the average value of f (x), the same as the expected
value of each y from point sampling. To get an estimate with lower
variance, average H over all flats of a k-d dart, several darts, or over
some other uniform-random collection: y ′ = ∑I

i=1 Hi/I .

3.1.2 Nonbox Domains. This algorithm can be extended to
general domains. Extend the domain X to its bounding box B(X ),
and extend f to fB over B(X ) by defining fB = 0 in B(X ) \ X .

Now estimate the average of fB over B(X ) as before us-
ing H for box domains. To get an estimate of f over X , use
y ′ = H · V (B(X ))/V (X ). This is unbiased if V (X ) and V (B(X ))
are known exactly. If either volume must be estimated, then y ′ is
only guaranteed to be unbiased in the limit as the sample size ap-
proaches infinity. This is because the product of unbiased estimates
is not usually an unbiased estimate of their product. The best way
to use these values is to average H over many samples, average the
volume estimates over many samples, then return the product.

3.1.3 Efficiency. In many cases we can obtain a fast expression
for f over a flat by substituting fixed-coordinate constants into the
expression for f . If the result is analytic, integrating over the flat is
easy and efficient. If not, the substitution may have at least reduced
the expense of evaluating f at the remaining free coordinates. One
option is numerical integration over a discretization of the flat.
Represent a flat with a uniform grid (mesh). (We assume it is too
expensive to mesh the entire domain.) In (1), clip the grid elements
at the domain boundary, generating simplices. In (2), evaluate f at
the grid points and perform standard numerical integration over the
grid simplices.

3.1.4 Applications. Our depth-of-field, probability of failure,
and volume estimation applications follow this recipe, because they
use Monte Carlo integration, but the integration along the line flats
can be made faster and more accurate given application-specific
knowledge about the function. For probability of failure, the func-
tion we integrate is the 0–1 indicator function of failure, rather than
the continuous value of the response function. We improve accu-
racy by finding the roots of a single-variable equation to find the
boundary points where the indicator function switches its value.
For depth-of-field, f is the contribution of one ray (photon) to a
pixel, and we seek to estimate the contribution of all photons over
all focal depths for each pixel. For efficiency we use discrete algo-
rithms to find the occlusion boundaries of triangles, then integrate a
continuous function over each nonoccluded segment of a triangle.

3.2 Finding a Point in the Domain with a Particular
Function Value

MPS represents a different category of application. Instead of inte-
grating f (x), we are looking for a random x that satisfies f (x) > 0,
that is, finding a point outside all prior disks. Point-sampling tech-
niques would sample the entire domain until such a point was found,
which is expensive if the acceptable region is small. We can speed
up the search using k-d darts.

(1) Clip F at the domain boundary, retaining g. (For MPS, we clip
a line by the cube.)
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(2) Retain the portions of g where the function value is acceptable,
f > 0. (For MPS, these are the subsegments outside all prior
disks.)

(3) Return a random point from g.

The likelihood of generating a particular g after several iterations
of this process is usually different than its likelihood from uniform
point sampling; Section 4.1.2 discusses this in more detail.

3.3 Darts are Unbiased for Averaging a Function

We prove that the algorithm in Section 3.1.1 is “unbiased,” meaning
the expected mean estimate using darts is equal to the true mean.
Actually we show something stronger: the expected value of a sin-
gle, uniformly sampled, axis-aligned flat is equal to the true mean.
The expected value of sampling by darts is the mean of the expected
value of all the flats; so, by the stronger result, this is the mean of a
set of expected values that are themselves the true mean.

The stronger result follows immediately from point sampling
being unbiased and the order independence of multidimensional
integration. Let D be the set of domain coordinates, and partition
it into the set of fixed and free coordinates for a flat: D = Dfree ∪
Dfixed. Convert f from a function over a d-dimensional domain
to fDfixed over the fixed coordinates by integrating over the free
coordinates: fDfixed = ∫

Dfree f .
By definition of the true mean u of f , we have

u

∫
D

1 =
∫
D

f =
∫
Dfixed

∫
Dfree

f =
∫
Dfixed

fDfixed.

Since a uniform point sample s is unbiased, E(f (s)) = u. Let
uDfixed be the true mean of fDfixed. Since picking a particular flat is
done by uniform point sampling over Dfixed, we have

E(fDfixed(sDfixed)) = uDfixed =
∫
Dfixed fDfixed∫

Dfixed 1
.

Combining these two we have

E(fDfixed(sDfixed))
∫
Dfixed

1 = u

∫
D

1.

Since the domain is a box,∫
D

1 =
∫
Dfixed

∫
Dfree

1 =
(∫

Dfixed
1

) (∫
Dfree

1

)

=
(∫

Dfixed
1

)
V (flat).

That is, simply divide the integral of f over a flat by the flat’s
relative volume to get an unbiased estimate:

E(fDfixed(sDfixed))

V (flat)
= u.

We reemphasize that this shows that a single axis-aligned flat is
an unbiased estimator when chosen uniformly from a box. We did
not rely on the dimensionality of the flat, cycling deterministically
over the set of fixed dimensions, nor flats being orthogonal; these
may affect the variance but not the mean estimate.

Except for the uniform sampling over the fixed coordinates and
the volume of a flat being constant, we did not rely on the domain
being a box nor the flats being axis aligned. For comparison we
perform unbiased sampling with unaligned flats in Section 5.

4. APPLYING THE FRAMEWORK

We now describe how to apply the k-d dart framework to our rep-
resentative applications in more detail.

4.1 Relaxed MPS

Our relaxed maximal Poisson-disk sampling algorithm is a variant
of traditional dart throwing, throwing point darts and keeping those
that hit an uncovered region (void). Algorithm 1 specifies our im-
plementation in detail; in brief, we cast a line dart into the domain
and intersect it with the disks of previously accepted samples to
generate a set of uncovered segments, then uniformly sample from
those segments with a point dart. The user specifies an acceptable
void volume V , the fraction of the domain uncovered by sample
disks. We have a conservative stopping criteria based on the number
of successive misses that usually achieves a smaller void volume.
Figure 5 can be used as a guide for selecting V in four dimensions.

ALGORITHM 1: A classical dart throwing algorithm using line
darts.

while maximality estimates are inadequate do
generate a line dart s1

for all i = permutation(1..d) do
generate line segments g = s1

i ∩ domain
for all samples p do

subdivide g = g \ D(p)
end for
if g 	= ∅ then

count s1 as a hit
select a sample point uniformly from g

skip to next line dart
end if

end for
count s1 as a miss

end while

4.1.1 Complexity. The memory requirements are only O(nd),
which is what is required to represent the output point set because
each sample has d coordinates. Only 2n + d floats are needed for
scratch space for line segments g. We may generate and store only
one flat of one dart at a time. The runtime is O(dn log n + nd2) per
dart throw. The most significant feature is that the complexity does
not suffer from a curse of dimensionality: there are no exponents
containing d . The number of throws is a function of V and the miss
rate; we are not aware of any statistical techniques or theorems that
would allow us analytically bound the miss rate, but we show that
for line darts it can be made reasonable, or at least more reasonable
than the alternatives.

Our approach is efficient because a line dart is more likely to
intersect an uncovered region than a point dart. Only extremely
simple and one-dimensional data structures are needed. The cost of
throwing a line dart is nearly the same as a point dart.

4.1.2 Output and Process. The main drawback is that the out-
put is not maximal, but its deviation can be estimated. A second
potential drawback is that the process is not identical to MPS.
There is no proof that the expected outputs are the same. Indeed, for
a nonmaximal sample, the probability of inserting the next sample
point in a given disk-free subregion depends only on the subre-
gion’s area in MPS; but for our variant the probability depends also
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Fig. 5. Achieved distribution aspect ratio for different void volume thresh-
olds V in d = 4. Top shows the means across different rf , and bottom shows
more statistics for rf = 0.01, including standard deviation, sd. This is over
25 experiments.

on how much prior disks cover the axis-aligned lines through the
subregion. The main effect appears to be the order in which points
are introduced, rather than their spatial distribution near maximal-
ity. Choosing the position of the next sample is dependent on many
prior random decisions, so there are few noticeable patterns between
one run and another with a different random number seed.

MPS and Algorithm 1 follow a different process. The quality of
the outcome, the point positions, does not appear to be sensitive
to this, and we see little distinction between the outputs using the
standard measures of FFT spectrum, power, and anisotropy. Addi-
tionally, we are unaware of any formal definition of an ideal point
set nor any proof that MPS produces it, so exactly matching the
MPS process and its output are not strict requirements. The con-
ventional goal in the graphics literature is “blue noise,” meaning
no discernible axis- or boundary-aligned patterns in the FFT as in
Figure 6, and smooth anisotropy as in Figure 6 left; and something
resembling the FFT of a Heaviside step function for the mean radial
power, as in Figure 6 right.

4.1.3 Implementation Details.

4.1.3.1 k-d Tree. To speed up the iteration over prior samples
when generating segments g we use a k-d tree. This allows us to
prune samples whose disks are too far away to intersect the line
of s1

i . A k-d tree requires little memory regardless of the number
of dimensions. A k-d tree uses axis-aligned partitions, which is a
perfect match for checking the proximity of disks to our axis-aligned
flats.

4.1.3.2 Line Segments g. We compute and store g, an array
of segments, subsets of the line sample s1

i . (This is our only data

Fig. 6. Radial anisotropy and mean power estimates for line darts (top)
and point darts (bottom), averaged over ten samplings.

structure besides the k-d tree and a list of the accepted samples.)
Each segment is inside the domain but outside the sample disks
processed so far. Each coordinate is the start (a) or end (b) of an
uncovered segment. Each segment is distinguished by a subscript,
that is, g = [a0b0a1b1 . . . aqbq ].

To update g for a new disk D we must remove from g the parts
of its segments covered by the disk. We first compute the covered
segment g′ = D ∩ l = [b′, a′]. We find the position in g where b′

and a′ should appear. If they are beyond a0 or bq , the disk does not
intersect g. If b′ and a′ both lie between aj and bj , the latter segment
is split into two: ajb

′a′bj . Otherwise, if only b′ lies between aj and
bj , then a segment is trimmed by replacing bj by b′; a similar step
applies for a′. Any endpoints between b′ and a′ are covered by the
disk and discarded.

To choose a point from g uniformly, we sum the lengths of the
segments L, choose a random number between 0 and L, and find
the corresponding point on g.

In practice, implementing g using a fixed-length array is efficient
enough. (The number of segments is less than n, assuming the
domain is convex.) An efficient implementation of g is a balanced
tree. We can find the positions of b′, a′, and a random point in
O(log n) time. We can update the tree in amortized O(1) time.

4.1.3.3 Maximality Estimates. The user sets the remaining
void volume V that is acceptable. Here we show how to translate
that into a conservative stopping criteria. Denote the probability of
hitting the void with a k-d dart by Pk . Given a lower bound on Pk ,
we set m ≥ �1/Pk�. We stop after m consecutive misses.

We seek lower bounds on Pk in terms of V in order to find a
sufficiently large value of m. For point darts, k = 0 and P0 = V
regardless of void shape. For higher-dimensional darts, the worst
shape for a void is a hypercube with edge length b = V

1
d . By worst

shape, we mean the shape that has the smallest Pk for a fixed V ,
assuming the entire domain is a hypercube. For a hypercube void, the
probability of hitting that void with a k-d flat is given by pk = V

d−k
d .

A k-d dart contains lk = (
d

k

)
k-d flats and hence Pk = 1− (1−pk)lk .

This gives a lower bound on Pk , and a sufficient value of m. We
may consider this as an MC estimation of the remaining void using
a sample size of the last m + 1 k-d darts. As in any MC process,
there is some variance, which decreases as k increases. Moreover,
the remaining void is typically scattered throughout the domain,
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Fig. 7. Time (blues) and memory (reds) for line darts compared to Simple
MPS for the same acceptable void volume, V = 1e-2, in d = 4.

Fig. 8. V threshold effects on time (blues) and sample size (greens) for
line and point darts in d = 4. Data points are labeled with log10 V . As V

decreases, the sample approaches maximality and distribution aspect ratio 1.
Simple MPS [Ebeida et al. 2012] dashed lines are for a maximal distribution.

resulting in a smaller rc than the worst case where the void is a
single hypercube.

4.1.4 Experimental Results.

4.1.4.1 Distribution Aspect Ratio. The free radius, rf , is
the disk radius, the minimum distance between any two samples.
The coverage radius, rc, is the maximum distance between a domain
point and its nearest sample. We define the distribution aspect ratio
as β = rc/rf ≥ 1. This is a measure of maximality.

To compute this for a point set, we used Qhull [Barber et al. 1996]
to generate a Voronoi diagram. For each Voronoi vertex interior to
the domain we retrieved the distance to its closest sample point: rc

is the maximum of these distances.
Figure 5 shows the relation between the distribution aspect ratio

and the acceptable void volume in d = 4 for various disk-free radii.
Figure 7 shows time and memory across different radii for a fixed
void volume. Figure 8 shows runtimes as the point sets approach
maximality. Line darts consistently produced better results than
point sampling.

4.1.4.2 Speed of Approaching Maximality. We tested our
code over 2-, 4-, 10-, and 30-dimensional domains using point
darts and line darts. Figure 9 shows the number of points inserted
over time. The expected void volume V is related to the number of
points; in practice the number of inserted points is a better indicator
of maximality than our loose estimates of V based on successive

Fig. 9. Line darts approach maximality faster than point darts, as measured
by the number of inserted points in a given runtime.

misses. Line darts were able to generate larger samples for all V
and d .

4.1.4.3 Efficiency by Method. Figure 7 compares the per-
formance of traditional point darts and line darts (this work) to
Simple MPS [Ebeida et al. 2012]. Recall Simple MPS is based on a
flat quadtree, and is currently the fastest and most memory efficient
of the provably correct MPS methods. Our method is attractive at
large values of rf for its speed, and at low values of rf for its mem-
ory consumption. For example, for rf < 0.025, we generated 4M
points in half an hour using 107 MB of memory, while Simple MPS
ran out of memory at 2 GB.

4.1.4.4 Output Quality. We measure the quality of the dis-
tribution of 2-d output points using the PSA spectrum analysis
tool [Schlömer 2011]. Using point darts, our process is the same as
classic dart throwing, so we use it as our standard of correct output.
Figures 6 and 10 compare the outputs’ blue-noise properties; the
difference between point and line darts was insignificant, at least
for these three metrics.

4.2 Depth-of-Field with Antialiasing

k-d darts can be used for fast and high-quality rendering of Depth-
Of-Field (DOF) effects in computer-synthesized images. Mathemat-
ically, computing a pixel’s color in the presence of DOF can be ex-
pressed as a four-dimensional integral over the pixel’s spatial (x, y)
and lens aperture (u, v) dimensions. In most high-quality render-
ers, this is calculated using Monte Carlo integration over many point
samples. This method suffers from a low rate of convergence; reduc-
ing noise for a good-quality image usually requires a very large num-
ber of samples per pixel. k-d darts offer the promise of faster conver-
gence with low noise. Instead of using point samples for reconstruc-
tion, we use 1-d (line) darts, thrown in the 4-d (x, y, u, v) space.

We use Latin Hypercube Sampling (LHS) or jittered sampling
for each dimension [Cook 1986]. Given that our sample space is
four-dimensional, each line dart consists of four line flats. We select
n points, that is, 4n flats. Each line requires a fixed location in 3-d
and a variable fourth dimension.

We compute coverage for these darts using a method inspired by
Gribel et al.’s work [2010, 2011] on rendering motion blur. Gribel
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Fig. 10. FFT spectra (right) for the relaxed MPS point sets (left) generated
by line darts (top) and point darts (bottom).

et al. fix x and y and shoot line samples in the time domain; instead,
we use line darts that shoot line flats in all spatial dimensions to
compute depth-of-field blur. We also sample a higher-dimensional
problem.

4.2.1 Contrast to Tzeng et al. Tzeng et al. [2012] considered
line sampling for DOF. They only consider the two (u, v) dimen-
sions, not the four (u, v, x, y) dimensions as we do. Further, they
take advantage of the structure that the (u, v) subspace of interest
is uniformly circular. This reduces 2-d (u, v) sampling to 1-d sam-
pling of lines through the origin, pinwheel sampling by angle. In
their implementation, for each pixel, they fix x and y and use a
pinwheel of line samples to vary u and v. The resulting DOF had
high performance when compared to point sampling strategies, with
low noise. However, due to both the pinwheel configuration and the
fixing of x and y for each pixel’s sample, strobing artifacts tended
to occur in regions with high-frequency changes. The formulation
we present in this article differs in the following ways.

—Both implementations address DOF, but we also address
antialiasing.

—Tzeng et al.’s line darts are all radial and specified completely by
their angle; they live in 1-d (θ ) space. In this article, we use axis-
aligned darts in 4-d (x, y, u, v) space. The positive and negative
consequences follow:
—Tzeng et al. exhibits screen-space aliasing because x and y are

fixed.
—Tzeng et al. achieves higher-quality DOF for the same number

of samples, because 1-d spaces require fewer samples to cover
than 4-d spaces.

—Tzeng et al. use nonrandom dart locations, but we randomly
position darts.

—Tzeng et al.’s work specifically targets the GPU pipeline; we do
not discuss (or consider) implementation details.

4.2.2 Triangle Edge Equations in 4-d. We now describe the
triangle equations and how we create a line sample. For a given
triangle, we start by computing a signed radius of Circle of Con-
fusion (CoC) for each vertex, obtained using the following expres-
sion [Hammon 2008]

CoC = A
f (z − zf )

z(zf − f )
,

where A and f are the camera aperture and focal length, respec-
tively, and zf and z indicate the respective depths of the focal plane
and the given vertex. Note z is simply the w coordinate of the ver-
tex in clip space. Now that we have the circle of confusion for each
triangle’s vertex, we can begin formulating a sampling strategy for
each pixel.

Given a set of coordinates on the lens u and v, we assume a
linear apparent motion of the vertex screen coordinates. For a given
screen-space vertex i ∈ {0, 1, 2}, with coordinates (xi, yi), circle of
confusion ci , and u, v ∈ [−0.5, 0.5], we have

xu
i = xi + ciu (2)

yv
i = yi + civ. (3)

For each pixel we have a four-dimensional space (x, y, u, v),
where x and y are the subpixel regions, and u and v are coordinates
on the lens. To get a realistic and noise-free image, we seek to
sample this space uniformly in an effective manner. Since we have
four varying dimensions, we choose to use four different hypercubes
for our Latin Hypercube Sampling (LHS). Each hypercube chooses
three dimensions within which to sample, and one that will vary in
our next stage.

For each triangle, we can consider the edge equations in this four-
dimensional space to be the following: we substitute Eqs. (2) and
(3) into the equations for testing whether a point (x, y) lies within
one of the triangle edges i. Let ESi represent the edge-sum at point
(x, y) for the ith edge, between vertices i and j ,

ESi(x, y, u, v) = (
y − yv

i

)(
xu

j − xu
i

) − (
x − xu

i

)(
yv

j − yv
i

)
.

Expanding, we get equivalent right-hand sides

⇔ (y − yi − civ)(xj − xi + u(cj − ci))

− (x − xi − ciu)(yj − yi + v(cj − ci))

⇔ ESi(x, y, 0, 0)

+ u(cj (y − yi) − ci(y − yj ))

− v(cj (x − xi) − ci(x − xj )).

This simplifies to

ESi(x, y, u, v) = Ci(x, y) + uAi(y) − vBi(x) ≥ 0.

Here we have four dimensions of variability (x, y, u, v). In
conventional point sampling, one would randomly (or pseudo-
randomly) select a set of points in this space. We instead decide
to employ line sampling using our Latin hypercubes. To illustrate
this concept, consider fixing three of these dimensions with points
on our hypercube from LHS: select x1, y1 and u1 for x, y and u.
Now we have a line equation as follows:

ESi(v) = Ci(x1, y1) + u1Ai(y1) − vBi(x1),

which simplifies to

ESi(v) = P − vQ.

This line equation is easy to analytically solve for each of our
edge equations and determines where line coverage exists. The same

ACM Transactions on Graphics, Vol. 33, No. 1, Article 3, Publication date: January 2014.



3:10 • M. S. Ebeida et al.

Fig. 11. Our technique for computing analytical coverage using line darts.
In this example, consider two possible line flats in the x and u directions.
The domain can be transformed and we can test the triangles for occlusion
along the line flat as shown in (a). Depth resolution per flat is shown in (b).

concept can be extended to our other hypercube setups, fixing three
of the dimensions and varying the last.

4.2.3 Analytical Coverage in the Hypercube Domain. Know-
ing the edge equations in our 4-d domain, we can now compute their
coverage along a line sample. Figure 11 summarizes our technique
for determining coverage.

We instantiate a set of line flats along each of our four hypercube
configurations. A line dart is the combination of four different line
flats (one in the direction of each of the four dimensions of the
domain) with initial points chosen using our LHS.

Rendering consists of testing each incoming triangle against po-
tentially covered line flats. For each pixel sample in the triangle’s
bounding box, we use equations from Section 4.2.2 to transform
triangle edges to test for the correct hypercube domain.

To finish the calculation we follow Gribel et al.’s approach [2010]
to construct and resolve line darts.

For each line flat, we analytically compute its segment covered
by the triangle. A per-line-sample queue stores the color and depth
of covered segments. Once all triangles have been processed, we
resolve the final color for each sample. We sweep across the flat
while aggregating triangles closest in depth, and then use all pixel
samples to compute the final color for the pixel.

4.2.4 Implementation and Results. To test our formulation, we
built a simple CPU-based renderer. It is capable of rendering scenes
using traditional triangle rasterization. We integrated two additional
capabilities:

—a stochastic sampler based on point darts;
—a sampler based on line darts.

The two noise artifacts that typically occur using a DOF scheme are
noise in blurry regions and noisy aliasing artifacts near the point in
focus. For scenes far away from the focal plane, line flats in the x
and y direction become particularly narrow when compared to the
sampling space, and this causes additional noise. In these regions
the length of flats in the x and y dimensions are significantly smaller
than flats in either the u or v direction.

If we consider all such flats to have equal contributions, this re-
sults in the x and y samples adding a noticeable amount of noise
into our system in blurry regions. To address this, rather than con-
sidering all line flats to have equal contribution, we select a weight
constant (α = 0.2 in our case) such that x and y line flats are scaled
by α and contribute less to the scene.

This weight can be modified based on the aperture of the lens
for the scene. In cases where the aperture is small, contributions

Table I. Performance of Our Point vs. Line Darts
Rendering Time (s)

Sample Type Sample Count Cessna Teapot

Points
64 29.6 52.1
256 116.7 198.6

1024 453.0 792.1

Line Darts
4 14.9 24.5

16 56.8 91.9
30 105.1 169.4

Fig. 12. Plots of the test functions in 2-d.

from x and y are deemed more important (for antialiasing), and
the weight is adjusted accordingly. A more accurate dart sampling
method might also consider the ratios of flat lengths per tile (worst
case) and decide on an α weight accordingly. Research is needed to
determine the optimal amount for each flat to contribute. Still, our
simple heuristic seems effective.

Figure 13 compares two scenes rendered with our point dart and
line dart techniques. Renderings based on k-d darts are virtually
free of noise and aliasing artifacts. Point darts, however, retain
noticeable aliasing artifacts even with 1024 darts. Although 16 line
darts produce a bit more noise in unfocused regions than 256 point
darts, 30 line darts has better quality than 256 point darts and around
the same quality as 1024 point darts in unfocused regions, and no
noticeable aliasing artifacts in focused areas.

Table I shows the performance of our samplers. Clearly, throwing
one line dart is more expensive than throwing one point dart. How-
ever, fewer are needed, and correctly weighted line darts converge
more quickly to a less noisy image without aliasing artifacts.

4.3 Probability of Failure

Uncertainty quantification usually explores a vast high-dimensional
space with a limited budget of sample points. Efficiency is crucial
because typically the function evaluation is expensive and we want
more sample points than we can afford. Sometimes we can afford
more data by evaluating a cheaper surrogate model instead. But,
if the failure region is small enough, then even that is not enough
for Monte Carlo (MC) sampling to accurately estimate the prob-
ability of failure. Here we show that k-d darts can improve MC
efficiency.

We test the “circular parabola” (Eq. (4)) and “planar cross”
(Eq. (5)) surrogate models; see Figure 12.

y(x) =
d∑

i=1

(2xi − 1)2, 0 < xi < 1. (4)
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Fig. 13. Depth-of-field (DOF) images using conventional point sampling (rows a–c) versus our k-d darts (rows d–f). k-d darts produce high-quality, antialiased
images. The “blurred tail” column shows a close-up of an extremely blurry region, the Cessna’s tail. In regions close to the focal plane we see some aliasing
artifacts for point darts but not for line darts: for example, at the body–wing junction in the “focussed prop” column; and the transition shades on the green
teapot spout in the rightmost two columns. Furthermore, line darts tend to be faster for the same quality blur; see Table I.
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Fig. 14. Shape of the failure regions in 2-d.

Fig. 15. Speedup of line darts over point sampling for estimating the Prob-
ability Of Failure (POF) of the circular parabola (left) and planar cross
(right) analytic test functions. Each trend line indicates the Root-Mean-
Square (RMS) error of the estimated POF over 64 trials, for a test function
in a given dimension (labeled #d) with known analytic POF yt (labeled
1E-#). Test functions with the same dimension and POF are colored the
same in the left and right. Note that the speedups are greater than 1 for these
problems, indicating that line darts are faster than point sampling. Since
line darts in essence reduce the dimensionality of the problem by one, as
the dimension increases the speedup decreases; maintaining speedup may
require higher-dimensional darts.

y(x) =
[

d∏
i=1

1 + cos(2πxi)

2

]1/d

, 0 < xi < 1. (5)

Failure is defined as the function value below some constant
threshold: y(x) < yt . The shape of the failure region is different for
the two test functions: a d-dimensional ball for the parabola and a
fattened plus-sign for the planar cross; see Figure 14. For uniform
distributions, the probability of failure is the fraction of the domain
volume where y(x) < yt . We choose yt so the probability of failure
is exactly 10−5 or 10−7. We tested dimensions 2, 6, and 15. We
estimate the failure volume using line darts. For a line flat, we find
the roots of the single-variable equation y(xi) = yt . The length of
the line segment between the two roots (if real roots exist) is used
to estimate the volume of the failure region. Figure 15 demonstrates
the benefit of line darts over conventional point sampling in reducing
the time required to achieve a given accuracy level. Root-finding for
line darts is expensive, but the information is worth it: for all tests
line darts were more efficient than point darts. Our root-finding
implementation is more expensive for the planar cross than the
circular parabola, so the speedups for line darts on the planar cross
are less even though the failure region is longer and thinner.

Table II. k-d Dart Parameter Study
d k s r n

2 0–1 1
10 , 1

2 , 1, 2, 10 10 102–106

2 0–1 0.5 0, 1, 5, 10, 20 102–106

3 0–2 1
10 , 1

2 , 1,
√

2,
√

10 10 102–106

3 0–2 0.5 0, 1, 5, 10, 20 102–106

10 0–9 1
10 , 1

2 , 1,
9√2,

9√10 10 102–106

10 0–9 0.5 0, 1, 5, 10, 20 102–106

The darts are axis aligned except for some d = 2 experiments. We repeat
each parameter combination 1000 times, N = 1000. Squish parameters s are
symmetric around 1 with respect to ellipse volume: for example, for d = 2,
s = 1/2 and s = 2 define ellipses with the same volume.

5. ACCURACY EXPERIMENTS

5.1 Problem Motivation

We provide some experimental results on the accuracy of darts for
the canonical Monte Carlo problem of estimating the volume of
an object in high dimensions. (Volume estimation is in the same
category as the probability-of-failure problem in Section 4.3.) In
particular, we seek to show that the method produces good estimates,
regardless of the size, shape, dimension, and orientation of the
object, and regardless of the dimension and orientation of the darts.
The average estimate should be close to the true estimate, and the
higher moments of the estimates should be low. We design our
experiments to show the effects (if any) of the following factors:

—d , the dimension of the object;
—k, the dimension of the dart. Of particular interest is comparing

our results to standard MC point sampling, k = 0;
—s, the squish factor of the object, which controls its aspect ratio;
—r , the number of rotations of the object. This allows us to compare

axis-aligned objects to unaligned ones;
—axis-aligned darts versus unaligned darts.

We perform N experiments of n flats over the prior parameters, as
described in Table II. Note that we keep the number of flats constant,
rather than the number of darts, because the computational expense
is more closely tied to the number of flats for objects with an analytic
expression, and because middle-dimensional darts have many more
flats than high- and low-dimensional ones.

5.2 Object Generation

Instead of a spherical object, we estimate the volume of an el-
lipse (a.k.a. ellipsoid), randomly oriented and squished. An ellipse
provides enough generality to test the factors in Section 5.1, but
enough simplicity to isolate numerical from methodology issues. In
particular, we choose an ellipse because it is possible to analytically
calculate the volume of an ellipse’s intersection with a k-d dart.

Our object is a d-dimensional ellipse centered at the origin. We
construct it as follows. We start with a d-ball centered at the origin
with radius 1. This fits in an origin-centered cube with side length 2,
the two-cube. We ensure the final ellipse also lies in the two-cube.

—s: squish factor. We scale the ellipse along the x-axis by multi-
plying its x-extent by s. The ball has s = 1. Note s < 1 gives
thin, coin-shaped objects. For s > 1, we then shrink the ellipse
so it fits in the two-cube: multiply all coordinates by a factor of
1/s. The net effect is keeping the x-coordinate fixed and scaling
the other axes by 1/s. This gives needle-shaped objects.

—r: number of rotations. The more rotations we perform, the less
the object is aligned with the coordinate axes. We perform r
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rotations in sequence. Each is a Givens rotation with a random
pair of coordinate indices i and j , and a random angle θ ∈ [0, π ].
To define a Givens rotation, take the identity matrix and replace
the 2 × 2, {i, j} submatrix [1 0; 0 1] by [cos θ -sin θ ; sin θ cos θ ].
Then multiply the coordinate matrix by the Givens matrix.

5.3 Dart Generation

Most implementers will choose axis-aligned darts for three reasons.
First, it is easy to distribute aligned darts uniformly, which ensures
that the expected mean of the function estimates is accurate. Sec-
ond, it is easiest to implement aligned darts, since it involves simply
fixing coordinate values. Third, in many cases it is most efficient
because we may obtain an expression for the underlying function
along a dart by substituting in the fixed-coordinate values. How-
ever, for completeness we provide some experimental results on the
accuracy of unaligned darts. We shoot k-d darts into the two-cube
as follows.

—A point dart (k = 0) is generated by selecting a random point.
Each of the d coordinates is chosen independently and uniformly
in [0, 1].

—Aligned darts are generated by their flats. Each flat has a unique
combination of d − k fixed-coordinate indices; the remaining
k coordinates are allowed to vary. The coordinates for the fixed
indices are chosen independently and uniformly as for point darts.

—Unaligned flats are generated so that the orientation of the flats
is uniformly random. The only experimental setting where we
generate unaligned flats is for k = 1 and d = 2, line darts in
the plane. We choose angle θ ∈ [0, π ], which determines the
orientation of the flat. Any line that intersects the square crosses
one of its main diagonals. (It is guaranteed to cross the diagonal
to which it is more perpendicular, which depends only on θ .)
We pick a point p uniformly at random along the appropriate
diagonal. We now have a point and an angle, which together
define a line flat. For random darts, the second flat is a line
perpendicular to the first line, passing through some random
point q of the other diagonal.

Aligned 1-d darts are labeled “k = 1a,” random flats are labeled
“k = 1r,” and random darts, pairs of orthogonal flats, are labeled
“k = 1o” in the top two rows of Figures 16 and 17.

5.4 Object-Dart Intersection

For point darts, the volume estimation is the fraction of darts that
landed inside the ellipse, multiplied by the volume of the two-cube
sampling domain, 2d . For k > 0 darts, instead of this discrete ratio,
we average the geometric fraction of each dart inside the ellipse
object. The details of these calculations follow.

For point darts, we simply back-project the points to the domain
of the ball: apply the inverse Givens rotations to the dart’s point in
reverse order; then scale the x-coordinate by 1/s (or, for s > 1,
all the other coordinates by s). If the distance from the transformed
dart to the origin is less than 1, it is inside the ball, and the original
dart is inside the ellipse.

For k-d darts, we back-project their hyperplanes into the ball
domain, where we can calculate the volume of intersection analyti-
cally, and then forward-weight it by the scaling.

To back-project a flat, we back-project k + 1 points spanning the
flat. Each dart has d − k fixed coordinates and k free coordinates.
We pick spanning point p0 with 0 for all of its free coordinates,
and spanning point pi>0 with 1 for its ith free coordinate and 0 for

its other free coordinates. Each pi is back-projected to qi using the
same procedure as for a point dart. The k vectors from q0 to {qi>0}
span the transformed flat, but are no longer orthonormal because of
the final scaling step, so we must reconstruct an orthonormal basis.
Now we are ready to calculate volumes, using forward transforma-
tions. We calculate the distance from the flat to the origin. This tells
us the radius of the k-dimensional subball that is the intersection
of the flat with the d-ball. We compute the volume of this subball.
We multiply this volume by the sum of the x-components of the
orthonormal basis, which gives the volume of the (unrotated) ellipse
of intersection. The (forward) rotations do not affect the volume so
are skipped.

For unaligned line darts in the plane, the distance from the origin
is easy to measure. We use a process similar to the prior paragraph
but it is a little easier because the 1-ball is simply a line segment.

5.5 Results

We plot the mean of the absolute value of the relative error,
|mean−true|/true, versus the number of flats n in Figure 16. We plot
the histograms of the ratios of estimated/true volume for n = 106

in Figure 17. Each subfigure shows results for all k for some com-
bination of the other parameters.

In Figure 16 the experimental slopes for all k and d are about
−1/2, in agreement with theory (the n to the power −1/2 in Eq. (1)).
The accuracy is insensitive to the orientation of the object.

In Figure 17 the histograms are all sharply peaked at the true
value. This shows that the variations, the higher-order moments of
the estimates, are reasonable.

The major trend of these figures is that the accuracy of the es-
timates improves with k. Moreover, the larger the k, the smaller
the variation of the estimate and the sharper the peak near the true
value.

For small-volume objects, aligned darts are more accurate than
unaligned darts. This is illustrated by the red curves in the top right
and top left subfigures in Figures 16 and 17. We were initially sur-
prised by this, but the explanation is that unaligned flats are shorter
on average than aligned ones, because they might clip a corner of the
square rather than having a length equal to the side of the square, so
they miss the object more often. (They will be even shorter on aver-
age as the dimension of the space increases.) For moderate-volume
objects, the accuracy is about the same regardless of object orienta-
tion. For unaligned flats, it appears that our n was large enough that
using pairs of orthogonal flats or independently random individual
flats does not make much difference. Our conclusion is that aligned
darts are universally better when the sample domain is a square.

The accuracy is primarily sensitive to the volume of the object
and, secondarily, to the squish value. Higher-dimensional darts are
better than lower-dimensional ones, and the advantage is more pro-
nounced for small-volume objects. This can be seen by considering
the second-from-bottom row in Figures 16. To see the volume de-
pendence, note that the lines are closer together for s = 1, and far-
ther apart for larger and smaller squish factors. In low dimensions, 2
and 3, the smaller the volume of the object, the less accurate are all
estimates, for all dimensions k. Moderate-dimensional darts in high
dimensions, for example, d = 10 and k = 4, also exhibit this trend.
However, 9-d darts in 10-d space have the same accuracy regardless
of the volume or squish, because they are close to the dimension
of the underlying space and they more fully span it. For example, a
dart with k = d always evaluates to the true value. That is, the ad-
vantage of higher-dimensional darts over lower-dimensional darts
is greater for small objects in high dimensions, which is where we
are advocating their use.
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Fig. 16. Mean error of volume estimation, |mean − true|/true by n. See also Table II and Figure 17.

A secondary phenomenon is that the estimate is slightly more
accurate for squish s = 1/10 than for s = 9

√
10, despite the volume

being the same. This can be seen by careful examination of the
height of the lines in the d = 10, varying squish row in Figure 16.
For instance, the mean error is 10% lower in the first column than
the fifth for n = 104 and k = 4. This supports our intuition that darts
are effective at hitting thin, coin-shaped regions. Since 9

√
10 ≈ 1.3,

a 10-d object with this squish factor is actually roundish and not
very needle-shaped. Preliminary experiments show that the accu-
racy gained by increasing k is a complicated function of s and the
volume. High-dimensional darts have more advantage over low-
dimensional ones for very small and sharp needle-shaped objects,
compared to their advantage for coin-shaped objects.

6. CONCLUSIONS

In this work, we introduced k-d darts as a particular type of higher-
dimensional sampling. We described a k-d dart framework for hy-
perplanes of general dimension k, and then demonstrated efficiency
and accuracy over three applications using k = 1, and accuracy for
one application using k ≥ 1. In particular, darts produce accurate
estimates of the volume of an object regardless of the dimension,
orientation, and aspect ratio of the object. Axis-aligned darts are
universally preferable to unaligned ones for sampling square do-
mains, and we expect this to extend to hyperrectangles, such as
bounding boxes. Darts also produce accurate mean estimates for
function integration.
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Fig. 17. Volume estimation histograms, estimate/true by frequency, for n = 106. “1a” is axis-aligned darts; “1r” is random-angle, unaligned lines; and “1o”
is random-orientation darts, pairs of orthogonal flats. See also Table II and Figure 16.

Our implementation of darts samples each hyperplane orientation
in a deterministically uniform way rather than randomly uniform.
This yields a deterministic guarantee, rather than a probabilistic
one, that at least some of the darts will be perpendicular to the thin
directions of the object being probed. We hoped this would lower
the variance. In our experiments, we had low variance regardless,
perhaps because we had so many darts. For proving that the expected
mean estimate is the true mean, deterministic uniform was not
necessary.

In principle, thin objects are more efficiently sampled by higher-k
darts. Demonstrating that efficiency for applications requires either
analytical expressions, as in the toy ball-volume problem in the
Introduction; or efficient numerical techniques for evaluating the

underlying function along higher-dimensional flats. In future work
we plan to explore a numerical technique using recursive sampling
designs by dimension.

For maximal Poisson-disk sampling, line darts are helpful in
getting close to maximality in high dimensions. Below a given
acceptable void ratio, they are more efficient than point darts. In
terms of bounding the distance from a domain point to the nearest
sample point, we are actually closer to maximality as the dimension
increases. Any difference in the distribution of points produced by
classical maximal Poisson-disk sampling and our line darts is small
by the standard measures. Our line dart algorithm is efficient with
respect to memory usage, which enables the production of larger
samples in higher dimensions.
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For depth-of-field, generalized k-d darts give us a high-quality
noise-free image without aliasing. Although each 1-d dart requires
more processing than a point sample, we only need a few of them to
render a high-quality image. Thus our k-d dart method outperforms
point sampling. We suggest sampling over a higher-dimensional
space to render both depth-of-field and motion blur in animations.
We suggest exploring weighted darts, where scene information de-
termines which flats contribute more to a scene.

For uncertainty quantification, k-d dart Monte Carlo sampling
can be more efficient than point sampling. The key for all these
applications is exploiting the problem structure to take advantage
of what k-d darts provide.
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